
An ASN.1 compiler1 for embedded/space systems

George Mamaisi, Thanassis Tsiodrasi, David Lesensii, Maxime Perrotiniii

i Semantix Information Technologies, K.Tsaldari 62, Poligono 114 76, Athens, Greece
{ gmamais, ttsiodras}@semantix.gr

ii Astrium Space Transportation. Route de Verneuil, BP 3002, F-78 133 Les Mureaux Cedex, France
David.Lesens@astrium.eads.net

iii ESTEC. Keplerlaan 1. PO Box 299, NL-2200 AG Noordwijk, The Netherlands
Maxime.Perrotin@esa.int

This paper presents ASN1SCC, an open source2 ASN.1 compiler that generates C/C++ and
SPARK/Ada code suitable for low resource environments such as space systems. Moreover, the
compiler can produce a test harness that provides full statement coverage in the generated code, and
therefore significantly improves its quality. This paper also presents ACN, a new ASN.1 encoding that
allows protocol designers to completely control the format of the encoded ASN.1 stream and hence
integrate ASN.1 applications with legacy ones. With ASN.1 and ACN, various space protocols such as
PUS3 can be modeled and with the usage of this ASN.1 compiler get automatic implementations of the
encoders and decoders. Finally, the ASN.1 compiler can translate an ASN.1/ACN definition into an
Interface Control Document (ICD), thus allowing interoperability with projects and people who don’t
know/use ASN.1.

1. Introduction
ASN.1 is a joint ISO/IEC and ITU-T standard that defines a flexible notation for describing data
structures. It represents data structures in an abstract, but formal manner - meaning that the descriptions
are platform and language agnostic, and that most importantly, they are validated by a machine (a
program). An ASN.1 compiler is a computer program that translates an ASN.1 specification into code
of a target programming language, such as C or Java. The generated code consists of two parts: (a) a set
of data structure declarations (types) which are semantically equivalent with those defined in ASN.1
and (b) a set of functions, known as encoders and decoders, which convert instances of the data
structure declarations into a stream of bytes - and vice versa. The rules of the encoding and decoding
process are defined by one of the standardized ASN.1 encoding schemes (such as BER, uPER, XER,
etc) and are completely independent of the chosen programming language, processor architecture or
operating system. Without ASN.1, the communication between an Ada process running inside an
RTEMS/SPARC/LEON environment and a C process running on Windows/x86, requires manual
implementation of message encoders and decoders in both processes. This kind of manual coding is
tedious and error prone, since developers must deal with issues like integer word size, endianness,
structure alignment, etc. If ASN.1 is utilized, the developers don't worry about any of the above issues
since the encoders and decoders of the exchanged messages are automatically generated by the ASN.1
compiler.

The above features make ASN.1 an ideal choice for inter-process communication, especially in low
resource environments. However, the existing COTS (commercial, off-the-shelf) ASN.1 compilers
have some significant issues when targeting low resource platforms. In particular:

(a) The generated encoders and decoders as well as the run-time libraries use dynamic memory
functions (e.g. malloc-ed, heap data). In embedded environments, usage of dynamic
memory is sometimes prohibited (e.g. satellites in space).

(b) Programming languages important for embedded platforms are not supported (e.g. Ada).
(c) Although existing ASN.1 compilers support many ASN.1 encodings, they provide no easy

mechanism4 for the protocol designer to affect the binary format of the encoded messages.
Interworking with existing, non-ASN.1 based systems, is therefore very difficult.

1 The ASN.1 compiler presented in this paper has been funded by ESA/ESTEC, contracts
21111/07/NL/FM/na and 22259/09/NL/CBI
2 http://www.semantix.gr/asn1scc/
3 Packet Utilization Standard, ECSS-E-70-41
4 ECN (Encoding Control Notation) is extremely complex and is currently supported by only one
vendor.

2. ASN1SCC
ASN1SCC (http://www.semantix.gr/asn1scc) is an open source ASN.1 compiler that was built to meet
the requirements of embedded/space platforms. It supports the major ASN.1 encodings: (a) Unaligned
Packed Encoding Rules - uPER (b) Basic Encoding Rules - BER (c) XML Encoding Rules - XER and
(d) ASN.1 Control Notation which allows the protocol designer to contol the binary stream (see section
iv). As opposed to other ASN.1 tools, both the compiler and its run-time library are open-source.
Moreover, it has a set of unique features that distinguish it from other ASN.1 compilers, and are briefly
described in the following paragraphs.

i) No dynamic memory
The code generated by ASN1SCC, as well as the run-time library, never use dynamic memory
functions (such as malloc). All memory requirements (i.e. the size of the encoded and decoded buffers
for each ASN.1 message) are calculated at compile time. By doing so, all required memory can be
statically reserved at compile-time, thus guaranteeing that there will be no failure due to lack of
memory at run-time.

For example, an ASN.1 type describing an array of integers...

...triggers the generation of the following macro definition and C structure from ASN1SCC:

Notice that the maximum size of the encoded data is available at compile-time, via the macro
AnArray_REQUIRED_BYTES_FOR_ENCODING. This means that the user code can statically reserve
the necessary space at compile-time, in global or static variables, thus guaranteeing the availability of
the necessary space:

The variable length arrays of ASN.1 (i.e. SEQUENCE SIZE(Smin .. Smax) OF T are mapped by
ASN1SCC to C structures. These structures contain an inline fixed-size array of T with size Smax (i.e.
the maximum possible extent of the array) as well as an integer field that stores the actual number of
the elements used.

The fact that the actual data are stored as an inline array and not as a heap-allocated block pointed to by
a pointer (or similarly, a linked list with pointers to heap allocated objects), means that sizeof(AnArray)
will always represent the maximum memory needs for the target type. This is true regardless of the
complexity of the type (e.g. arrays of sequences containing arrays, etc) - and allows reservation of all
the necessary memory space at compile-time.

ii) Automatic Statement Coverage
Critical software like space applications, must meet a set of guidelines - such as specific coding
conventions, or thresholds about branch and statement coverage levels. ASN1SCC itself has its own
regression checking suite, where thousands of ASN.1 grammars are used to drive the following
sequence (for each ASN.1 grammar):

• ASN1SCC processes the grammar and generates encoders and decoders for its types.
• A template "main" function is created that encodes the main (root) grammar message, and

then decodes it from the encoded data.
• The generated "main" combined with the ASN1SCC generated encoders and decoders is

compiled, and the generated binary is executed.
• Checks are performed to verify that the message field data remained the same across encoding

and decoding.
• Further checks are done to see that no internal abnormal state was encountered in the encoder

and the decoder during this “round trip” (even if this internal abnormality did not result in any
externally visible errors). This includes memory access validations from Valgrind5.

This test suite provides a baseline of confidence for the correctness of ASN1SCC and the code it
generates. However, a valid question posed by a number of early users of ASN1SCC (space companies
and ESA) was...

 "How can we have increased confidence that code generated by ASN1SCC will correctly process
all the - theoretically infinite! - messages that are possible under a particular ASN.1 grammar?"

The caveat here being that, obviously, a project-specific grammar cannot be tested as part of the
ASN1SCC quality assurance process - since ASN1SCC is not conceived with any particular grammar
in mind.

To address this issue ASN1SCC was enhanced further: it can now automatically generate a set of unit
tests for a given input grammar. These unit tests are in fact sets of ASN.1 variable assignments - i.e.
data assignments for the grammar's types. The key point is that these data assignments, upon encoding
and decoding, exercise the ASN1SCC-generated encoders and decoders to 100% statement coverage.
At the end of this test, the user knows for a fact, that (a) the encoders and decoders were exercised by
the automatically generated unit tests so that all their code was executed, without any abnormal state
arising at runtime, and (b) that the message data were perfectly preserved in the round trip (original
data => encoded message => decoded message => same data).

Assume for example that a simple ASN.1 grammar describes messages containing double precision
numbers:

In the course of encoding, decoding and otherwise handling these messages, the code generated by
ASN1SCC has to consider all the possible "states" for this number:

5 Valgrind: an instrumentation framework for dynamic analysis of executables (http://valgrind.org/)

When fed with this grammar, ASN1SCC generates a number of test cases, declared as ASN.1 variable
assignments:

ASN1SCC compiles these test cases and generates code for the target languages. The generated code,
in tandem with a specially made test harness, is subsequently compiled by the compiler - and the
resulting executable is then spawned under a coverage checking tool6. For each individual message
(“test1”, “test2”, etc) the message content is encoded, decoded and verified to survive the round trip. At
the end of the execution, the coverage checker reports the statement coverage in the encoders and
decoders, and the test harness verifies that this is 100%.

Notice that the process is automated - there's no human involvement. If, for example, the generated
test messages do not exercise a part of the code, the user will then get a notice from the coverage
checker, that a part of the encoder/decoder is not tested. In that case, he can indicate this to the
ASN1SCC developers (so that the required additional test case is generated) - or he can still identify
the parts in question, and manually create additional tests for these cases, to reach 100% coverage. This
feature is not currently available in any other ASN.1 compiler.

iii) SPARK/Ada support
To increase the quality of the generated sources in environments where very high reliability is
expected, the Ada versions of the encoders/decoders generated by ASN1SCC use SPARK/Ada
annotations.

The SPARK language consists of a restricted, well-defined subset of the Ada language that uses
annotated meta-information - in the form of Ada comments. This meta-information describes the
desired component behavior and the individual runtime requirements. It therefore allows static analysis
to be performed at compile-time as a further, automated check on program correctness. The static
analysis verifies code invariants, preconditions and postconditions – that is, it applies Design by
Contract principles to accurately formalize and validate the expected runtime behavior of the
ASN1SCC-generated encoders and decoders.

Assume for example the following Ada function definition, which divides two integers:

The programmer implicitly knows that the divisor must never be zero. However, this knowledge is
available only to the programmer, and not to the compiler. Therefore if this function is called by user
code that calculates the arguments at run-time via an algorithm, the code may end up being called with
a divisor value of zero - and an error will then appear and potentially crash the application at run time.
To address this, SPARK allows programmers to enrich their interfaces with pre and post conditions.
For example, the above definition in SPARK can be annotated as follows:

The line starting with --# is a SPARK annotation which explicitly informs the SPARK examiner that
the DIV function requires the divisor parameter to never be zero. This means that the SPARK
examiner must check at compile time all the places where the DIV function is called and make sure that
it is never called with divisor equal to zero. If this is not the case, the examiner reports an error.

6 Gcov, coverage checking (http://gcc.gnu.org/onlinedocs/gcc/Gcov.html)

ASN1SCC's SPARK backend emits encoders and decoders that are annotated with SPARK
annotations, thus allowing the static analysis to detect invalid usage (data-wise) of the API. In fact,
PER-visible ASN.1 constraints are transformed into semantically equivalent SPARK annotations, and
will therefore be thoroughly checked by static analysis, guaranteeing that a buffer overflow during
encoding/decoding is impossible.

For example, the following procedure is used in the encoding of a Boolean type in uPER. If the
encoded value is true, then bit value 1 is written in the uPER stream - otherwise bit value 0 is written.

The derives annotation informs SPARK about the dependencies of outputs from the input values. The
pre annotation says that whenever this function is called the value of curPos counter plus one must be
within the bounds of the outputStream array. Finally, the post annotation says the value of the curPos
counter will be increased by one by the end of this function.

The important impact of these annotations is that SPARK will be able to enforce these restrictions at
compile time and thus an out of range exception in lines 13 and 15 is impossible.

iv) Integration with legacy systems – the ACN encoding
The major benefit of ASN.1 is that the encoding and decoding process is independent of the
programming language, the hardware platform and the Operating System. Moreover, the standardized
ASN.1 encoding schemes offer additional and significant benefits, such as speed and compactness for
PER or decoding robustness for BER, etc. However, the existing ASN.1 encodings provide no means
for the protocol designer to control the final encoding (i.e the binary format at the bit level). This is a
problem for situations where a new ASN.1-based system has to communicate over a binary protocol
with an existing legacy system. For example, the PUS (Packet Utilization Standard), which is used in
space missions to encode Telemetry/Telecommands, cannot be specified in ASN.1 using any of the
existing encodings (BER,PER,etc).

To address this issue, we designed and implemented a new ASN.1 encoding, known as ACN (ASN.1
Control Notation). ACN allows protocol designers to control the format of the encoded messages at the
bit level. In ACN, users can specify how each ASN.1 type will be encoded. Attributes can be set, such
as the bit length of an integer, its endianness (big/little), its alignment etc. Moreover, for aggregate
fields such as SEQUENCE, CHOICE and SEQUENCE OF the user can define optionality patterns,
choice determinants, length fields etc.

For example, to encode an unsigned integer in16 bits and align it to the next octet start (i.e. a stream
offset in bits which is a multiple of 8), you would...

ASN.1 MyInt1::=INTEGER (0..2000)

ACN MyInt1[encoding pos-int, size 16, align-to-next byte]

In the above example, the protocol designer specified via ACN that the ASN.1 type MyInt1 will be
encoded as a positive integer, using 16 bits, and will always be byte aligned in the encoded buffer.

A more advanced example of ACN, based on PUS:

Figure 1 shows a PUS packet. It consists of two main parts: (a) the Packet Header (area with the white
background) and (b) the Packet Data Field (top right grey area).

The Packet Data Field part is actually a composite field consisting of multiple sub-fields. The Data
Field Header has two enumerated fields (service type and service subtype) which determine the actual
form of the “Application Data” field.

In other words, the “Application Data” field is a CHOICE type where the active alternative is
determined by the combination of Data Field Header fields service type and service subtype. In ASN.1
this can be modeled as follows:

 PacketDataField ::= SEQUENCE {
 ...
 dataFieldHeader DataFieldHeader,
 msg ApplicationData,
 ...
 }

 DataFieldHeader ::= SEQUENCE {
 ...
 service-type INTEGER (0..255),
 service-subtype INTEGER (0..255),
 ...
 }

 -- example of application data
 -- (based on service-type/subtype combination)
 ApplicationData::= CHOICE {
 a1 MessageA, -- when the combination is 100,120
 a2 MessageB, -- when the combination is 101,120
 a3 MessageC, -- when the combination is 101,121
 ...
 }

Figure 1: Automatic PUS encoding via ACN

With the appropriate ACN syntax, one can bind the elements of this ASN.1 grammar into a valid PUS
specification:

 PacketDataField {
 ...
 dataFieldHeader [],
 msg < dataFieldHeader.service-type, dataFieldHeader.service-subtype >[],
 ...
 }

 DataFieldHeader {
 ...
 service-type [encoding pos-int, size 8],
 service-subtype [encoding pos-int, size 8],
 ...
 }

 ApplicationData <INTEGER:servID, INTEGER:subServID> [] {
 a1 [present-when servID==100 subServID==120],
 a2 [present-when servID==101 subServID==120],
 a3 [present-when servID==101 subServID==121],
 ...
 }

The ACN present-when keyword is used to match the specific combinations of values with the type
that the ApplicationData CHOICE is carrying. Notice that:

1. The ApplicationData has a parameterized ACN encoding. This is shown with the angle brackets

('<',' >'). Parameterized encoding means that this type cannot be decoded independently - it needs
two extra values. In other words, the ACN decoder function for the ApplicationData type will
have two extra parameters that must be passed by the caller.

2. Likewise, the msg field in the PacketDataField, which is a reference type to the parameterized
type ApplicationData, has two additional arguments, the dataFieldHeader.service-type and
dataFieldHeader.service-subtype. So, a two way binding has been established between the two
fields in the DataFieldHeader and the CHOICE type ApplicationData. Two way binding means:

o during the decoding process, the CHOICE ApplicationData will read the values of service-

type and service-subtype in order to be decoded correctly
o during the encoding process, the values of service-type and service-subtype will be updated

automatically based on which of the alternatives a1, a2, a3 is present in the CHOICE
ApplicationData.

3. The present-when syntax within the CHOICE ApplicationData expects a boolean expression (in
fact, a boolean AND expression), i.e. when all comparisons match, the selected CHOICE target is
used.

v) Automatic ICDs
Interface Control Documents (ICDs) describe the binary format of messages exchanged between
entities (the "wire format"), and are widely used in the space domain e.g. in the specification of
space/ground interfaces.

ASN1SCC can automatically create ICDs for a given ASN.1 grammar. This allows users who are not
familiar with ASN.1 to easily understand the structure of the encoded messages, and if they so wish,
manually implement the required encoding in their target environment, and interoperate. The ICD
generator supports the uPER and ACN encodings.

For example in the following ASN.1 message…

TestPDU ::= SEQUENCE {
 int1 INTEGER(0..15), -- this field requires 4 bits
 int2 INTEGER(0..65535), -- this one, 2 bytes
 buf OCTET STRING (SIZE(10)) -- 10 bytes
}

... the compiler will create an Interface Control Document that will contain the following table:

Figure 2: ICD generator output

The above is an example of the visual layout of the generated document which demonstrates why this
tabular / visual way of defining the data structures is more comprehensible for people not familiar with
ASN.1.

3. Use of ASN.1 in space application
The interest of the ASN.1 data
modelling language and of the
associated tools (code and ICD
generators) has been assessed by
Astrium by retro-engineering a part
of the ATV (Automated Transfer
Vehicle) program.

When code and documentation
(ICD) generation techniques from
ASN.1 are used, it can decrease
dramatically the number of potential
inconsistence:

Figure 3: ATV Jules Verne, during its rendezvous with the ISS,

on the 3rd of April 2008

a. Between the software and its documentation: The definition of data has to be performed only

once (in the data modelling language). The syntax and semantics checker ensure the quality of
this description. Code and ICD are naturally consistent (modulo the quality and certification of
the generation tools). Furthermore, whenever a change is made in the original model, it becomes
immediately visible to both ICD and code, keeping them synchronised.

b. Between communicating software components: When communicating software components are
developed in different programming languages (Ada, SCADE, C…) or are running on different
types of processors (ERC32, Leon…), they may use different incompatible memory
representation of data. This requires generally a manual implementation of translation
algorithms, which require a perfect knowledge of the compilers and of the hardware
architecture. The ASN.1 toolset decreases dramatically the cost of the software development
and suppresses the risks of incorrect implementation of the translation code.

Figure 4: Avionics / Software interface description

c. For the Telemetry/Telecommand function: The TM/TC function implements the interfaces

between the ground control center and the spacecraft. Often developed by two distinct
industrials, using generally different programming languages and hardware architectures,
formalizing the shared data is often a challenge. ASN.1 offers a large number of features
allowing the full description of this interface, as specified by the ESA standard “Ground systems
and operations - Telemetry and telecommand packet utilization” (ECSS-E-70-41).

Figure 5: Ground / Board interface (TM/TC) description

ASN.1 is today envisaged for the future generation of European
launcher. The digital architecture of this launcher will be:

a. Distributed: The flight software will be dispatched on several
processors,

b. Partitioned: Two pieces of software will run on a single board
with a Time and Space Partitioning (TSP) hypervisor and

c. Heterogeneous: The software will be partially coded in Ada,
partially in C, partially automatically generated from SCADE

ASN.1 is therefore the main candidate to capture the interfaces
between the processors, between the partitions and between the
heterogeneous pieces of code.

The Ada/SPARK version of the ASN1SCC compiler could especially
be used to automate the tedious and error-prone coding of the data
encoding.

Figure 6: Future launcher

4. Future work
 In the space domain, there are families of protocols that are customized on a mission-specific basis.
PUS, for example, has a fixed mission-agnostic part that is always the same, and a mission-specific
one. We are currently introducing template support in ASN1SCC which will allow the users to
“partially” define message structures that will be instantiated on a mission-specific basis when the
mission-specific parts are known. This will allow optimal re-use of message specifications across

missions. In this way it will be possible to aggregate ASN.1 specifications in a library of reusable
components.

For example, assume that there is a family of missions that use messages of the following type:

mission A: Frequencies::= SEQUENCE (SIZE(10)) OF INTEGER

mission B: Frequencies::= SEQUENCE (SIZE(25)) OF REAL

mission C: Frequencies::= SEQUENCE (SIZE(1000)) OF INTEGER

Both the size of the frequencies array as well as the type used to represent frequencies is configured in
a mission-specific basis. "Reuse" in such a context consists in copying and modifying the previously
used definition (by way of example). Instead, ASN.1 templates would allow a generic template to be
specified once in a simple and concrete manner. E.g. the reusable template component would be:

PROBA-MISSION-TEMPLATES DEFINITIONS AUTOMATIC TAGS::= BEGIN

FrequenciesTemplate{INTEGER:someLength, SomeType } ::=
SEQUENCE (SIZE(someLength)) OF SomeType

END

while the mission specific would be:

PROBA3-MISSION DEFINITIONS AUTOMATIC TAGS::= BEGIN
FROM PROBA-MISSION-TEMPLATES IMPORT FrequenciesTemplate;

Frequencies ::= FrequenciesTemplate{100, REAL}

END

Note that from an engineering perspective this is not about the number of keystrokes involved or the
inconvenience of having to copy-paste and modify the definition used in the last mission. Without
ASN.1 template support, the "generic" specification of what a frequencies table should look like is
given in a human language – where as with ASN.1 template support, the specification is given in a
formal notation, can be put under source control and can be leveraged by all kinds of tools (not just the
ASN1SCC).

5. Conclusion
We presented an open-source ASN.1 compiler which was specifically made to target embedded
platforms and their needs. The compiler includes support for features that significantly improve the
correctness and verifiability of the generated code (like SPARK and automatic test case generation),
and also supports ACN, which allows the user to control the binary format of the encoded messages.
Moreover, it automatically generates interface control documents (ICDs) thus allowing seamless
interoperability with non-ASN.1 entities. As demonstrated by the preliminary assessment from
Astrium, ASN1SCC can play an important role in the implementation of safety critical applications for
embedded platforms.

