An ASN.1 compiler! for embedded /space systems

George MamalsThanassis Tsiodra®David Lesens Maxime Perrotif}

' Semantix Information Technologies, K.Tsaldari Baligono 114 76, Athens, Greece
i {gmamais, ttsiodras}@semantix.gr
" Astrium Space Transportation. Route de Verne##i3802, F-78 133 Les Mureaux Cedex, France
David.Lesens@astrium.eads.net
" ESTEC. Keplerlaan 1. PO Box 299, NL-2200 AG NodjklwT he Netherlands
Maxime.Perrotin@esa.int

This paper presents ASN1SCC, an open s6um8N.1 compiler that generates C/C++ and
SPARK/Ada code suitable for low resource environtsesuch as space systems. Moreover, the
compiler can produce a test harness that providéstatement coverage in the generated code, and
therefore significantly improves its quality. Thoaper also presents ACN, a new ASN.1 encoding that
allows protocol designers to completely control tbemat of the encoded ASN.1 stream and hence
integrate ASN.1 applications with legacy ones. WABIN.1 and ACN, various space protocols such as
PUS can be modeled and with the usage of this ASNmpiler get automatic implementations of the
encoders and decoders. Finally, the ASN.1 compger translate an ASN.1/ACN definition into an
Interface Control Document (ICD), thus allowingdardperability with projects and people who don’t
know/use ASN.1.

1. Introduction

ASN.1 is a joint ISO/IEC and ITU-T standard thafides a flexible notation for describing data
structures. It represents data structures in amaabsbut formal manner - meaning that the detiong

are platform and language agnostic, and that mmopbitantly, they are validated by a machine (a
program). An ASN.1 compiler is a computer progrduat translates an ASN.1 specification into code
of a target programming language, such as C or. Jdsgenerated code consists of two parts: (e} a s
of data structure declarations (types) which areasgically equivalent with those defined in ASN.1
and (b) a set of functions, known as encoders awbdkrs, which convert instances of the data
structure declarations into a stream of bytes -\doe versa. The rules of the encoding and decoding
process are defined by one of the standardized A8Ncoding schemes (such as BER, uPER, XER,
etc) and are completely independent of the chosegr@mming language, processor architecture or
operating system. Without ASN.1, the communicatimiween an Ada process running inside an
RTEMS/SPARC/LEON environment and a C process rupron Windows/x86, requires manual
implementation of message encoders and decoddistinprocesses. This kind of manual coding is
tedious and error prone, since developers must w#hlissues like integer word size, endianness,
structure alignment, etc. If ASN.1 is utilized, tthevelopers don't worry about any of the aboveeissu
since the encoders and decoders of the exchangeshges are automatically generated by the ASN.1
compiler.

The above features make ASN.1 an ideal choicerfi@r-process communication, especially in low
resource environments. However, the existing COd@nfmercial, off-the-shelf) ASN.1 compilers
have some significant issues when targeting lowwe=s platforms. In particular:

(a) The generated encoders and decoders as well aarthiane libraries use dynamic memory
functions (e.g.nmal | oc-ed, heap data). In embedded environments, usageymdmic
memory is sometimes prohibited (e.g. satellitespace).

(b) Programming languages important for embedded phatf@re not supported (e.g. Ada).

(c) Although existing ASN.1 compilers support many ASNncodings, they provide no easy
mechanisrh for the protocol designer to affect the binarynfiat of the encoded messages.
Interworking with existing, non-ASN.1 based systemmsherefore very difficult.

! The ASN.1 compiler presented in this paper hasnb&emded by ESA/ESTEC, contracts
21111/07/NL/FM/na and 22259/09/NL/CBI

2 http://www.semantix.gr/asniscc/

% Packet Utilization Standard, ECSS-E-70-41

* ECN (Encoding Control Notation) is extremely compland is currently supported by only one
vendor.

2. ASN1SCC

ASN1SCC http://www.semantix.gr/asnlscis an open source ASN.1 compiler that was bailneet

the requirements of embedded/space platformsphats the major ASN.1 encodings: (a) Unaligned
Packed Encoding Rules - uPER (b) Basic Encoding®RuBER (c) XML Encoding Rules - XER and
(d) ASN.1 Control Notation which allows the protbdesigner to contol the binary stream (see section
iv). As opposed to other ASN.1 tools, both the cibanpand its run-time library are open-source.
Moreover, it has a set of unique features thatrdjsish it from other ASN.1 compilers, and are flyie
described in the following paragraphs.

i) No dynamic memory

The code generated by ASN1SCC, as well as theima-tibrary, never use dynamic memory
functions (such asal | oc). All memory requirements (i.e. the size of the@aed and decoded buffers
for each ASN.1 message) are calculated at comipile. tBy doing so, all required memory can be
statically reserved at compile-time, thus guarantgehat there will be no failure due to lack of
memory at run-time.

For example, an ASN.1 type describing an arrayigers...

- I

S LTS L LA

E (SIZE(1..10))

EXAMPLE-MODULE DEFINITIONS AUTOMATIC TAGS ::= BEGII

H e
(=]
[

...triggers the generation of the following macadinition and C structure from ASN1SCC:
#define AnlArray REQUIRED BYTES FOR ENCODING 21

typedef struct |
long nCount;
aznlSccSint arr[l0]:

r AnArrav:

Notice that the maximum size of the encoded dataviilable at compile-time, via the macro
AnArray REQUIRED BYTES FOR_ENCODING. This means that the user code can staticallyvese
the necessary space at compile-time, in globatadicsvariables, thus guaranteeing the availabdity
the necessary space:

S* A5 static data in a8 function */

vold fool...)

static char encodedStream[AnfArray REQUIRED BYTES FOR ENCODING] ;

The variable length arrays of ASN.1 (i.BEQUENCE SZE(S;n .- Smx) OF T are mapped by
ASN1SCC to C structures. These structures contaimlane fixed-size array of T with siz8. (i.e.

the maximum possible extent of the array) as welam integer field that stores the actual number of
the elements used.

The fact that the actual data are stored as ameialiray and not as a heap-allocated block pototeg

a pointer (or similarly, a linked list with pointeto heap allocated objects), means stmbf(AnArray)

will always represent the maximum memory needstHertarget type. This is true regardless of the
complexity of the type (e.g. arrays of sequencegaining arrays, etc) - and allows reservationlbf a
the necessary memory space at compile-time.

ii) Automatic Statement Coverage

Critical software like space applications, must maeset of guidelines - such as specific coding
conventions, or thresholds about branch and stateocwyerage levels. ASN1SCC itself has its own
regression checking suite, where thousands of ASMalnmars are used to drive the following
sequence (for each ASN.1 grammar):

e ASNI1SCC processes the grammar and generates es@itkdecoders for its types.

e A template "main" function is created that encotles main (root) grammar message, and
then decodes it from the encoded data.

e The generated "main" combined with the ASN1SCC perd encoders and decoders is
compiled, and the generated binary is executed.

e Checks are performed to verify that the messade diata remained the same across encoding
and decoding.

e Further checks are done to see that no internaraial state was encountered in the encoder
and the decoder during this “round trip” (everhistinternal abnormality did not result in any
externally visible errors). This includes memorgess validations from Valgrifd

This test suite provides a baseline of confideraretlie correctness of ASN1SCC and the code it
generates. However, a valid question posed by dauof early users of ASN1SCC (space companies
and ESA) was...

"How can we have increased confidence that code generated by ASN1SCC will correctly process
all the - theoretically infinite! - messages that are possible under a particular ASN.1 grammar?"

The caveat here being that, obviously, a projeeti$ic grammar cannot be tested as part of the
ASN1SCC quality assurance process - since ASN1SQ®ti conceived with any particular grammar
in mind.

To address this issue ASN1SCC was enhanced fuitteam now automatically generate a set of unit
tests for a given input grammar. These unit testsirmfact sets of ASN.1 variable assignments.- i.e
data assignments for the grammar's types. The @iy {3 that these data assignments, upon encoding
and decoding, exercise the ASN1SCC-generated erscadd decoders to 100% statement coverage.
At the end of this test, the user knows for a fawf (a) the encoders and decoders were exeroised
the automatically generated unit tests so thathaelr code was executed, without any abnormal state
arising at runtime, and (b) that the message dat& werfectly preserved in the round trip (original
data => encoded message => decoded message =xlatane

Assume for example that a simple ASN.1 grammar ritess messages containing double precision
numbers:

EXBMPL.E-MODULE DEFINITIONS AUTOMATIC TAGS :=:=

wm
m
wm

In the course of encoding, decoding and otherwesedling these messages, the code generated by
ASN1SCC has to consider all the possible "statsthiis number:

if (value == 0.0)

"/ auteo-genserated code for handling 2ero
else if (value == 4wm)

f/ auto-generated code for handling positive infinity
el=se if (value == -m)

/' auto-generated code for handling negative infinity
else

'/ auto-generated code for handling "normal™

3]
M)
7]
m

® Valgrind: an instrumentation framework for dynamic analysis of executables (http://valgrind.org)

When fed with this grammar, ASN1SCC generates abeurof test cases, declared as ASN.1 variable
assignments:

EXAMPL.E-MODULE-TESTS DEFINITIONS AUTOMATIC TAGS::=

IMPORTS MyTeatMessage FROM EX2MPTL.E-MODULE;

a.a --
FLUS-INFINITY --
MINOS-INFINITY --
J.14 -

teatl MyTestMessage ::
teat2 MyTeatMeasage ::
teatd MyTeatMessage ::
teatd MyIleatMessage ::

]
.0

B om
O m G

[51]

o0y Ly

]
H

ASN1SCC compiles these test cases and generatedaothe target languages. The generated code,
in tandem with a specially made test harness, isesguently compiled by the compiler - and the
resulting executable is then spawned under a cgeecaecking todl For each individual message
(“testl”, “test2”, etc) the message content is eiech decoded and verified to survive the round #ip

the end of the execution, the coverage checkerrteploe statement coverage in the encoders and
decoders, and the test harness verifies that4Hi60%.

Notice that the process is automated - there'sumoah involvement. If, for example, the generated
test messages do not exercise a part of the chdeyser will then get a notice from the coverage
checker, that a part of the encoder/decoder istesied. In that case, he can indicate this to the
ASN1SCC developers (so that the required addititest! case is generated) - or he can still identify
the parts in question, and manually create addititests for these cases, to reach 100% cover&ie. T
feature is not currently available in any other ABKompiler.

iii) SPARK/Ada support

To increase the quality of the generated sourcesnwironments where very high reliability is
expected, the Ada versions of the encoders/decogengrated by ASN1SCC use SPARK/Ada
annotations.

The SPARK language consists of a restricted, wefingéd subset of the Ada language that uses
annotated meta-information - in the form of Ada coemts. This meta-information describes the

desired component behavior and the individual metrequirements. It therefore allows static analysi

to be performed at compile-time as a further, aateh check on program correctness. The static
analysis verifies code invariants, preconditionsl gostconditions — that is, it applies Design by

Contract principles to accurately formalize andidate the expected runtime behavior of the

ASN1SCC-generated encoders and decoders.

Assume for example the following Ada function défan, which divides two integers:

FUNCTION DIV (dividend: INTIEGER; divisor: INTEGER) RETURN INTEGER;
The programmer implicitly knows that the divisor shunever be zero. However, this knowledge is
available only to the programmer, and not to theagiter. Therefore if this function is called by use
code that calculates the arguments at run-timawialgorithm, the code may end up being called with
a divisor value of zero - and an error will therpaar and potentially crash the application at mnet
To address this, SPARK allows programmers to erttelir interfaces with pre and post conditions.
For example, the above definition in SPARK can tiecgated as follows:

The line starting with --# is a SPARK annotationiethexplicitly informs the SPARK examiner that
the DIV function requires the divisor parameter to never be zero. This mdaas the SPARK
examiner must checit compile time all the places where the DIV function is called amake sure that
it is never called with divisor equal to zero. If this is rtbe case, the examiner reports an error.

® Geov, coverage checking (http://gcc.gnu.org/adimcs/gec/Geov.html)

ASN1SCC's SPARK backend emits encoders and decotthats are annotated with SPARK

annotations, thus allowing the static analysis étect invalid usage (data-wise) of the API. In fact
PER-visible ASN.1 constraints are transformed sgmantically equivalent SPARK annotations, and
will therefore be thoroughly checked by static s, guaranteeing that a buffer overflow during
encoding/decoding is impossible.

For example, the following procedure is used in émeoding of a Boolean type in uPER. If the
encoded value is true, then bit value 1 is writtethe uUPER stream - otherwise bit value 0 is emitt

1= PROCEDURE UPER Enc Boolean(

2 outputStream : in out Bithrrav;
3 curPos : in out N
4 valueToEncode: R
5 — 1D
(3 --= TcE de
7 ——% = t
g ——& post curPos = curPoa~ + 1
9 Is
10 BEGIN
11 curPos := curPos + 1;
123 IF valueToEncode THEN
13 outputStream(curPos) := 1;
14 ELSE
15 outputStream(curPos) := 0;
16 END IF;:

17 END UFEE_Enc Boolean:

The derives annotation informs SPARK about the dependenciesutguts from the input values. The
pre annotation says that whenever this function itedahe value o€urPos counter plus one must be
within the bounds of the outputStream array. Finahe post annotation says the value of ttigPos
counter will be increased by one by the end offilnistion.

The important impact of these annotations is tHaARK will be able to enforce these restrictions at
compile time and thus an out of range exceptidimas 13 and 15 is impossible.

iv) Integration with legacy systems - the ACN encoding

The major benefit of ASN.1 is that the encoding atetoding process is independent of the
programming language, the hardware platform andOperating System. Moreover, the standardized
ASN.1 encoding schemes offer additional and sigaift benefits, such as speed and compactness for
PER or decoding robustness for BER, etc. HoweWer eisting ASN.1 encodings provide no means
for the protocol designer to control the final ediog (i.e the binary format at the bit level). Thdésa
problem for situations where a new ASN.1l-basedesystas to communicate over a binary protocol
with an existing legacy system. For example, th&FBacket Utilization Standard), which is used in
space missions to encode Telemetry/Telecommandsotde specified in ASN.1 using any of the
existing encodings (BER,PER,etc).

To address this issue, we designed and implementeiv ASN.1 encoding, known as ACN (ASN.1
Control Notation). ACN allows protocol designersctintrol the format of the encoded messages at the
bit level. In ACN, users can specify how each AStyfde will be encoded. Attributes can be set, such
as the bit length of an integer, its endiannesg/l{ttie), its alignment etc. Moreover, for aggréga
fields such as SEQUENCE, CHOICE and SEQUENCE OFutde can define optionality patterns,
choice determinants, length fields etc.

For example, to encode an unsigned integer inlkb6dnit align it to the next octet start (i.e. aatre
offset in bits which is a multiple of 8), you would

ASN.1 Mylntl:=INTEGER (0..2000)

ACN Mylint1[encoding pos-int, size 16, align-to-next &y}

In the above example, the protocol designer spetiia ACN that the ASN.1 typ®lylntl will be
encoded as a positive integer, using 16 bits, dlidways be byte aligned in the encoded buffer.

A more advanced example of ACN, based on PUS:

Packet Header (48 Bits) Packet Data Field (Variable)
Data Field Packet
Packet Sequence Packet Header Application Error
I Control Length | (Optional) Data Spare Control
(see Note 1) {see Note 2)
Vers Data Applica-
,\flll:lf;; Type | Field tion Sequence | Sequence
B (=0) (=1) | Header | Process Flags Count
T Flag 1D
3 1 1 11 2 14
16 16 16 Variable Variable | Variable 16
CCSDS
Secondary ey Service Service
PUS Version Ack Source ID Spare
Header Type Subtype
Number
Flag
Boolean Enumerated | Enumerated(| Enumerated | Enumerated | Enumerated | Fixed BitString
(1 bit) (3 bits) 4 bits) (8 hits) (8 bits) (n bits) (n bits)

)-q— Optional —bl-q— Optional —b|

Figure 1. Automatic PUSencoding via ACN

Figure 1 shows a PUS packet. It consists of twamaits: (a) the Packet Header (area with the white
background) and (b) the Packet Data Field (toptgghy area).

The Packet Data Field part is actually a compo#ie consisting of multiple sub-fields. The Data
Field Header has two enumerated fields (service gypd service subtype) which determine the actual

form of the “Application Data” field.

In other words, the “Application Data” field is aHOICE type where the active alternative is
determined by the combination of Data Field Hedudds service type andservice subtype. In ASN.1

this can be modeled as follows:

Packet Dat aFi el d ::

dat aFi el dHeader

neg

}

Dat aFi el dHeader ::=

servi ce-type
servi ce- subt ype

}

= SEQUENCE {

Dat aFi el dHeader ,
Appl i cati onDat a,

SEQUENCE

{

| NTEGER (0. . 255),

I NTEGER

ApplicationData:: = CHO CE

(0..255),

exanpl e of application data
(based on service-type/ subtype conbi nati on)

al MessageA, -- when the conbination is 100, 120
a2 MessageB, -- when the conbination is 101, 120
a3 MessageC, -- when the conbination is 101, 121

With the appropriate ACN syntax, one can bind tleenents of this ASN.1 grammar into a valid PUS
specification:

Packet Dat aFi el d {

dat aFi el dHeader [],
nmsg < dat aFi el dHeader . servi ce-type, dataFi el dHeader. servi ce-subtype >[],

}
Dat aFi el dHeader {

servi ce-type [encodi ng pos-int, size 8],
servi ce-subtype [encoding pos-int, size 8],

}

Appl i cationData <I NTEGER servl D, | NTEGER: subServID> [] {
al [present -when servl D==100 subServl D==120],
a2 [present -when servl D==101 subServl D==120],
a3 [present -when servl D==101 subServl D==121],

}

The ACN present-when keyword is used to match the specific combinatingalues with the type
that theApplicationData CHOICE is carrying. Notice that:

1. TheApplicationData has a parameterized ACN encoding. This is showh thie angle brackets
('<',' >"). Parameterized encoding means thattyisis cannot be decoded independently - it needs
two extra values. In other words, the ACN decodgicfion for theApplicationData type will
have two extra parameters that must be passectlpatler.

2. Likewise, the msg field in thPacketDataField, which is a reference type to the parameterized
type ApplicationData, has two additional arguments, thiataFieldHeader.service-type and
dataFieldHeader.service-subtype. So, a two way binding has been established betlee two
fields in theDataFieldHeader and the CHOICE typ&pplicationData. Two way binding means:

o during the decoding process, the CHOIGgplicationData will read the values of service-
type and service-subtype in order to be decodecity

o during the encoding process, the valuesan¥ice-type and service-subtype will be updated
automatically based on which of the alternatives @2, a3 is present in the CHOICE
ApplicationData.

3. Thepresent-when syntax within the CHOICRpplicationData expects a boolean expression (in
fact, a boolean AND expression), i.e. when all carigpns match, the selected CHOICE target is
used.

v) Automatic ICDs

Interface Control Documents (ICDs) describe theabjinformat of messages exchanged between
entities (the "wire format"), and are widely usedthe space domain e.g. in the specification of
space/ground interfaces.

ASN1SCC can automatically create ICDs for a give8NAL grammar. This allows users who are not

familiar with ASN.1 to easily understand the strwetof the encoded messages, and if they so wish,
manually implement the required encoding in thamgét environment, and interoperate. The ICD

generator supports the uPER and ACN encodings.

For example in the following ASN.1 message...

D {

intl (0..15), -- this field requires 4 bits
int2 (0..65535), -- this one, 2 bytes

buf ((10)) -- 10 bytes

.. the compiler will create an Interface Contralddment that will contain the following table:

ASN.1
1 intl this field requires 4 bits Mo INTEGER. 0..15 4 4
2 int2 this one, 2 bytes Mo INTEGER. 0..65535 16 16
3 buf 10 bytes Mo L.E027 = 80 80

STRING (10))
Figure 2: ICD generator output

The above is an example of the visual layout ofgéeerated document which demonstrates why this
tabular / visual way of defining the data structui®more comprehensible for people not familiahwi
ASN.1.

3. Use of ASN.1 in space application

The interest of the ASN.1 data
modelling language and of the
associated tools (code and ICD
generators) has been assessed by
Astrium by retro-engineering a part
of the ATV (Automated Transfer
Vehicle) program.

When code and documentation

(ICD) generation techniques from_. . r— .

ASN.1 are used. it can decreasg'gures' ATVJuI%Verne,rqurlng|_tsrendezvousthhtheISS
. ; on the 3™ of April 2008

dramatically the number of potential

inconsistence:

a. Between the software and its documentation: Thénitieh of data has to be performed only
once (in the data modelling language). The syntak semantics checker ensure the quality of
this description. Code and ICD are naturally caesis(modulo the quality and certification of
the generation tools). Furthermore, whenever agdé&made in the original model, it becomes
immediately visible to both ICD and code, keepingrh synchronised.

b. Between communicating software components: Whenmuamicating software components are
developed in different programming languages (A@ADE, C...) or are running on different
types of processors (ERC32, Leon...), they may usierdnt incompatible memory
representation of data. This requires generally anual implementation of translation
algorithms, which require a perfect knowledge o€ thompilers and of the hardware
architecture. The ASN.1 toolset decreases drantigtitae cost of the software development
and suppresses the risks of incorrect implememtatidhe translation code.

BLOCK3-HEADER := SEQUENCE {
true-dtg-axis-to-atv-msul SEQUENCE (SIZE(6)) OF REAL .
true-dtg-axis-to-atv-msu2 REAL .,
true-ssu-axis-to-atv REAL,
dtg-consistency-lines-msul-dtgl-y REAL.
dtg-consistency-lines-msul-dtgd-x REAL,
dtg-consistency-lines-msul-dtgd-y REAL

Figure 4: Avionics/ Software interface description

c. For the Telemetry/Telecommand function: The TM/T@hdtion implements the interfaces
between the ground control center and the spacedtdfen developed by two distinct
industrials, using generally different programmit@nguages and hardware architectures,
formalizing the shared data is often a challeng8NA offers a large number of features
allowing the full description of this interface, ggecified by the ESA standard “Ground systems
and operations - Telemetry and telecommand padiigation” (ECSS-E-70-41).

USER-DATA-TC ::= CHOICE {

— Distribute Trouble Shooting Commands

tc-2-1 SEQUENCE {
— A unique identification of the bus where the Data is to be
— written
bus-id BUS-ID{ALL EXCEPT nop).
- MIL-1553B Message Command word
command-word COMMAND-WORD,
— Identifies the MIL-STD-15538 command type
command CHOICE {
transmit-command-data NULL,
- MIL-15538 Command Data. This field is present if the Command
— Type is "Troubleshooting TC".
receive-command-data BUS-DATA

}

— Distribute Low-Level Commands

tc-2-2 SEQUENCE {

- Data corresponding to the LLC' to be uploaded
lle LLC

}

Figure5: Ground / Board interface (TM/TC) description

ASN.1 is today envisaged for the future generatiddnEuropean
launcher. The digital architecture of this launcivél be:

a. Distributed: The flight software will be dispatched several
processors,

b. Partitioned: Two pieces of software will run oniagte board
with a Time and Space Partitioning (TSP) hypervesud

c. Heterogeneous: The software will be partially codedida,
partially in C, partially automatically generatedrh SCADE

ASN.1 is therefore the main candidate to capture ititerfaces
between the processors, between the partitions matdeen the
heterogeneous pieces of code.

The Ada/SPARK version of the ASN1SCC compiler coesgecially _ _
be used to automate the tedious and error-pronmgaf the data F19ure6: Futurelauncher
encoding.

4. Future work

In the space domain, there are families of prdsotuat are customized on a mission-specific basis.
PUS, for example, has a fixed mission-agnostic freat is always the same, and a mission-specific
one. We are currently introducing template supperASN1SCC which will allow the users to

“partially” define message structures that will imstantiated on a mission-specific basis when the
mission-specific parts are known. This will allowptimal re-use of message specifications across

missions. In this way it will be possible to aggatg ASN.1 specifications in a library of reusable
components.

For example, assume that there is a family of minssthat use messages of the following type:

mission A: Frequenci es: : = SEQUENCE (S| ZE(10)) OF | NTEGER
mission B: Frequenci es: : = SEQUENCE (SI ZE(25)) OF REAL
mission C: Frequenci es: : = SEQUENCE (SI ZE(1000)) OF | NTECER

Both the size of the frequencies array as welhasype used to represent frequencies is configured
a mission-specific basis. "Reuse" in such a contersists in copying and modifying the previously
used definition (by way of example). Instead, ASkemplates would allow a generic template to be
specified once in a simple and concrete manner.tkegeusable template component would be:

PROBA- M SSI ON- TEMPLATES DEFI NI TI ONS AUTOVATI C TAGS: : = BEG N

Frequenci esTenpl at e{ | NTEGER: soneLengt h, SoneType } ::=
SEQUENCE (S| ZE(someLengt h)) OF SoneType

END

while the mission specific would be:

PROBA3- M SSI ON DEFI NI TI ONS AUTOVATI C TAGS: : = BEG N
FROM PROBA- M SSI ON- TEMPLATES | MPORT Fr equenci esTenpl at e;

Frequenci es ::= Frequenci esTenpl at e{ 100, REAL}

END

Note that from an engineering perspective thisasabout the number of keystrokes involved or the
inconvenience of having to copy-paste and modify definition used in the last mission. Without
ASN.1 template support, the "generic" specificatainwhat a frequencies table should look like is
given in a human language — where as with ASN.Iplat®a support, the specification is given in a
formal notation, can be put under source contrdl@am be leveraged by all kinds of tools (not thst
ASN1SCC).

5. Conclusion

We presented an open-source ASN.1 compiler whick sgecifically made to target embedded
platforms and their needs. The compiler includggpeu for features that significantly improve the

correctness and verifiability of the generated cfiike SPARK and automatic test case generation),
and also supports ACN, which allows the user tatrobithe binary format of the encoded messages.
Moreover, it automatically generates interface mmntlocuments (ICDs) thus allowing seamless
interoperability with non-ASN.1 entities. As demtased by the preliminary assessment from
Astrium, ASN1SCC can play an important role in itmplementation of safety critical applications for

embedded platforms.

